Anatomy of an Imaging System

What toys do you need to take long exposure deep sky images?

Session 1

Anatomy of an Imaging System 3 separate sessions:

- 1. This session describes the hardware and software in general terms
- 2. PC software integration and demo
- 3. Mac/Unix Raspberry Pi software integration and demo

Simple tracked DSLR

You may want to start simple: Great for *beginning and wide field*. Relatively inexpensive path into astrophotography (while avoiding star trails).

- Camera
 - Your own DSLR
- Mount
 - Your own tripod +
 - a polar tracking mount
 - e.g. Skywatcher Star
 Adventurer, iOptron
 SkyTracker Pro, Fornax Mounts
 LighTrack II, etc.
- A good review of the options at https://astrobackyard.com/startracker-astrophotography/

Motorized Alt/Az mount can be used too

Orion ST80A f/5 refractor Celestron SLT GoTo Mount ASI224MC (ASI120MC-S)

But this is why we all end up at long focal length, long exposure, guided imaging

Hardware overview

- Camera
 - DSLR
 - CCD
- Optics
 - Telescope
 - Camera lens
- Mount
 - Equatorial
- Guiding system
 - Guider
 - Guide scope
 - Off axis guider
- Computer

You will want software to control things

- Telescope mount control
- Camera control
- Guiding
- Plate solving (optional but useful)
- Integration platform

HARDWARE

Cameras

- CCD/CMOS dedicated astro-imaging camera
 - Usually offers cooling and lowest dark current noise
 - Slightly wider spectral response
 - Generally preferred for scientific work as there is no unknown processing applied in-camera to the data
 - Not useful for much else

DSLR

- Can take long exposures in the tens of minutes
- Usually supports video useful for planetary work
- Generally limited red response unless modified
- Not cooled
- Produced very acceptable images
- Useful for other imaging endeavours

Optics

Camera lens

- Limited aperture
- Limited focal length
- Convenient
- Great for wide field work
- To get nice stars requires an expensive lens
- Not as sharp as a telescope in the center of the field

Telescope

- Easy to change the focal length
- Bigger aperture
- Generally narrower fields
- Can be expensive, but reflector designs less so
- Sharper in the center of the field than most camera lenses

Mount

- May be the **most** critical component in the system
- Must be equatorial or use a field derotator for long sub-exposures
- **MUST** be solid
- PEC useful, but not required if guiding
- Accurate GOTO capability very useful
- Computer interface almost a requirement
- Good polar alignment routine a godsend, even in permanent setup
- Be prepared for the cost (\$1500 for a light scope)
- Skimping on capability here **Will** lead to very frustrating nights under the stars

Guiding system

- Consists of guide camera and either guide scope or off axis guider
- Guide scope offers most flexibility in finding guide stars
- Off axis guider prevents differential flexure problems from mirror flop or a sloppy focuser

Off Axis Guider

- Small prism picks off light from the edge of the field and sends it to the guide camera
- Can only guide on a star at the edge of the field
- As focuser or mirror moves, so does the guide star on the guide camera and the error is removed by the guide camera

Guide Scope

- Allows easy
 selection of guide
 star, especially if
 connected to a
 guide scope mount
 instead of rings
- For shorter focal lengths even a finder can be used with sub-pixel guide cameras

Guider

- Almost any camera can be used
- Dedicated units typically offer better sensitivity for using dimmer guide stars
- Orion SSAG and Lodestar are very good

Computer

- Fast processor is not generally needed except if plate solving required
- Plenty of memory as some of the image files are large >100 MB
- SSD or SD card much better than spinning hard drive, especially in the cold
- LCD displays can have issues when cold
- Tablet computers running Windows work very well as do several dedicated, but more expensive systems such as the Eagle
- A Raspberry PI will do the job if you have one with enough memory
- Need lots of USB ports or a hub

SOFTWARE

PC Software You Want / Need

- Planetarium software
 - Many packages available
 - ECU written by our own member Dave Lane works well and comes with great support because we know where he lives
- Telescope / mount control software or drivers
- Camera control software
 - Lots of packages available, most CCD systems come with supporting software
 - Backyard EOS and Nikon work well for DSLR's
- Guiding software
 - PHD rules here, but there are others
- Plate solver
 - AstroTortilla is a bit tricky to set up, but integrates well with some camera software
- Integration solution
 - ASCOM is the most developed
 - INDI is becoming more useful
- All in one solutions are less flexible than an ASCOM solution
 - NINA is a free open-source PC only app that incorporates all these features https://daleghent.com/nina-introduction

MAC and Linux software

There are *fewer* commercial software packages for OS X and Linux systems...

Planning & Observation:	• Capturing & Processing:	• Utilities:
<u>AstroPlanner</u>	• <u>ASTAP</u>	 CloudMakers FITS Preview
<u>Observatory</u>	Astro Pixel Processor	 CloudMakers INDI Control Pane
Cartes du Ciel	 Stark Labs Nebulosity 	 CloudMakers INDI Server
SkySafari 6 Pro	• PixInsight	 CloudMakers Astrometry
tipeses Arintax or Amain, the hame is been from the Arabic "en-ritax" (the girdle).	<u>CloudMakers AstroImager</u>	 Collimation Aid
Planetarium & Scope	 CloudMakers AstroDSLR 	• <u>Darklight</u>
Control:	CloudMakers AstroGuider	• SER Player
<u>CloudMakers</u>	PHD2 Guiding	• Nightlight
<u>AstroTelescope</u>	Open Astro Project	• QFitsView
<u>Stellarium</u>	• Lynkeos	• PHD2 Log Viewer
KStars with EKOS	• Keith's Image Stacker	
<u>SkySafari 6 Pro</u>	StarTools	
Starry Night	FireCapture	
<u>TheSkyX</u>	• SiriL	
<u>AstroGrav</u>	Planetary Imager	
	ASTAP	
	<u>CCDciel</u>	
	StarStaX	
	• Startrails Creator	
	<u>—————————————————————————————————————</u>	

^{*}This is a list for OS X from: https://www.macobservatory.com/mac-astronomy-software/ (some are free)

MAC and Linux software

• There are *fewer* commercial software packages for OS X and Linux systems... but there are several *free* packages that provide numerous features.

KStars – based on indi framework https://edu.kde.org/kstars

Astroberry server – https://www.astroberry.io

Indigo – framework layer on top of indi http://indigo-astronomy.org

AstroPi3 – automates installing of KStars and other ancillary packages on numerous platforms https://github.com/rlancaste/AstroPi3

ASTAP - is a free stacking and astrometric solver (plate solver) program for deep sky images.

Stellar Mate

Stellarmate – Not free - prepackaged KStars Raspberry Pi hardware/software/OS (\$179) or software only for your own Raspberry Pi (\$49) https://www.stellarmate.com